
INTRODUCTION

Human skin is the largest organ of the body and extends to 
approximately 2 m2 in area (Tobin, 2006; Nichols and Katiyar, 
2010). Skin protects the body against excessive water loss 
and dangerous external factors including pollutants, UV irra-
diation, and chemicals (Makrantonaki and Zouboulis, 2007; 
Bonte, 2011). Accumulated UV exposure leads to skin aging, 
which causes wrinkle formation, acute erythema, tanning, 
and loss of hydration and elasticity (Scharffetter-Kochanek et 
al., 2000; Matsumura and Ananthaswamy, 2004; Kohl et al., 
2011).

There are several factors that control skin moisturization 
and elasticity. First, hyaluronan (HA) regulates moisture, elas-
ticity, and architecture of tissue, repairing tissue, promoting 
cell motility, and scavenging free radicals (Hsu and Chiang, 
2009; Wen et al., 2010). HA, a nonsulfated glycosaminogly-
can, is a component of the extracellular matrix (ECM) and is 
composed of repeating units of D-glucuronic and N-acetyl-D-
glucosamine (Kogan et al., 2007). HA is synthesized by three 

isoform enzymes, hyaluronan synthase 1 (HAS1), hyaluronan 
synthase 2 (HAS2), and hyaluronan synthase 3 (HAS3) (Rilla 
et al., 2013). A previous study has reported that UV irradiation 
induced loss of HA and down-regulation of HAS enzymes in 
skin (Dai et al., 2007). Second, differentiation of keratinocytes 
prevented extensive water loss as well as microbial patho-
gens and other dangerous factors in the skin (Gschwandtner 
et al., 2013). Last, concentration and organization of elastic 
fibers regulate skin tissue elasticity and resilience (Hahn et al., 
2006). Elastase leads to the degradation of elastin, inducing 
wrinkle formation (Suganuma et al., 2010).

Placenta is a specialized organ of pregnancy and is very 
important for growth and development of the fetus (Gude et 
al., 2004). Placenta has many components including growth 
factors, hormones, enzymes, bioactive peptides, vitamins, 
and minerals (Jash et al., 2011). Placenta extract has been 
studied in many fields of science due to its many biological 
functions including anti-aging, suppression of acute liver in-
jury and lipid peroxidation, and induction of mitogenesis and 
melanogenesis (Togashi et al., 2000; Pal et al., 2002; Wata-
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nabe et al., 2002). Porcine placental extract (PPE) has been 
recently developed as an oral supplement for use instead of 
human placenta extract (HPE) (Yoshikawa et al., 2014). Previ-
ous studies have shown that PPE decreased shoulder stiff-
ness, knee pain, and postmenopausal climacteric symptoms 
(Koike et al., 2012, 2013a, 2013b). PPE has been shown to 
protect skin photoaging through decreased matrix metallopro-
teinase-2 (MMP-2) and MMP-9 mRNA expression in human 
skin fibroblasts and in vivo (Yoshikawa et al., 2013; Hong et 
al., 2015). PPE also improved the appearance of fine wrinkles 
below the eye (Yoshikawa et al., 2014). However, the effects 
of PPE on skin moisturization and elasticity have not been 
reported, and the main peptides have not been identified.

In this study, we attempted to elucidate the effects of PPE, 
Glycyl-L-Leucine (Gly-Leu), L-Leucyl-Glycine (Leu-Gly), and 
L-Leucine-L-Leucine (Leu-Leu) dipeptides on skin moisturiza-
tion and elasticity in normal human keratinocytes (NHEKs) 
and UVB-induced hairless mice. 

MATERIAL AND METHODS

Experimental material
PPE was purchased from Biofac A/S (Kastrup, Denmark). 

Gly-Leu, Leu-Gly, and Leu-Leu were purchased from Bachem 
AG (Bubendorf, Switzerland).

Cell culture
NHEKs from neonatal origin were purchased from Invitro-

gen (Carlsbad, CA, USA). NHEKs were cultured in EpiLife® 
medium (Life Techonologies, NY, USA) with 60 μM CaCl2, 
human keratinocyte growth supplement (Invitrogen), and 1% 
penicillin/streptomycin (Welgene, Gyeongsan, Korea). Cells 
were maintained at 37°C in a 5% CO2 incubator. 

Cell viability assay
NHEKs were seeded into 96-well culture plates at 1×104 

cells/well. After 24 h at 37°C, the media was replaced with 
EpiLife® media containing PPE, Gly-Leu, Leu-Gly, and Leu-
Leu diluted to the appropriate concentrations for 24 h. Then 
cells were washed with DPBS, EZ-Cytox reagents (Daeil Lab 
Service, Seoul, Korea) were added, and the cells were incu-
bated at 37°C for 1 h. The absorbance was measured using a 
microplate reader (Tecan, Mannedorf, Switzerland) at a wave-
length of 450 nm. 

Western blot analysis
Cells were lysed in extraction buffer (0.1 M Tris-HCl, pH 7.2, 

1% TritonX-100, 200 mM NaCl, protease inhibitor cocktail) at 
4°C for 30 min. The lysates were subjected to centrifugation 
at 13,000 rpm for 20 min, and the supernatant was obtained. 
Blots were incubated with antibodies against anti-TGase1 
(Santa Cruz Biotechnology, CA, USA) and β-actin (Santa Cruz 
Biotechnology). After incubation, membranes were rinsed 
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Fig. 1. Effects of PPE, Gly-Leu, Leu-Leu, and Leu-Gly on growth 
of NHEKs. Cell viability was determined using Ez-Cytox assay and 
measured at 450 nm. Values are presented as the mean ± SD of 
three determinations (n=3).
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Fig. 2. Effects of PPE, Gly-Leu, Leu-Leu, and Leu-Gly on the pro-
tein level of TGase1 in NHEKs. The protein expression of TGase1 
was measured in NHEKs treated with (A) PPE for 48 h and (B) 
Gly-Leu, (C) Leu-Leu, and (D) Leu-Gly for 24 h by western blotting. 
Treatment of CaCl2 was used as a positive control. Values are the 
mean value of expression normalized to that of β-actin from three 
independent experiments ± SD. **p<0.01, ***p<0.001 compared 
with control.
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three times with TBS-T and were incubated with donkey anti-
rabbit IgG antibody (Bethyl Laboratories, Montgomery, TX, 
USA) and goat anti-mouse IgG antibody (Bio-Rad, CA, USA) 
for 1 h at room temperature. Binding antibodies were detected 
using a WEST-ZOL® Plus Western Blot Detection System (IN-
tRON Biotechnology, Sungnam, Korea) and visualized with 
ChemiDoc XRS (Bio-Rad, Hercules, CA, USA).

HA assay
HA content was measured from culture media of the NHEK 

cultures with a Hyaluronan DuoSet ELISA kit (R&D Systems, 
Minneapolis, MN, USA). NHEKs were seeded into 96-well 
culture plates at 1×104 cells/well. After 24 h, the cells were 
washed with DPBS, and serum-free media was added. After 
starvation for 24 h, NHEK cells were cultured with various con-
centrations of PPE, Gly-Leu, and Leu-Gly. After 24 h, the HA 
concentration in the culture supernatant was measured.

Elastase inhibition assay
The activity of porcine pancreatic elastase (Sigma, St. 

Louis, MO, USA) was examined using N-succinyl-(L-Ala)3-p-
nitroanilide as the substrate. The reaction mixture contained 
50 mM Tris-HCl buffer (pH 8.0), 1 U/mL elastase, and 0.5 mg/
ml N-succinyl-(L-Ala)3-p-nitroanilide. The reaction mixture was 
pre-incubated for 30 min at 25°C before adding the substrate. 
The release of p-nitroaniline was measured at 410 nm using 
a 96-well reader. The percent inhibition of elastase was calcu-
lated as follows:

Inhibition activity (%)=[1−(S−B)/C]×100

where S is enzyme activity in the presence of porcine pancre-
atic elastase, B is the activity without elastase, and C is the 
activity without sample.

Reverse transcriptase polymerase chain reaction (RT-PCR)
Total RNA was isolated from NHEK cells and mouse skin tis-

sue with the Trizol reagent (Takara, Otsu, Japan). The quality 

and quantity of the RNA were determined by NanoDrop2000 
(Thermo Scientific, Waltham, MA, USA). To synthesize cDNA, 
1 mg quantities of total RNA were mixed with 100 pmol quanti-
ties of oligo (dT) (ELPIS, Daejeon, Korea), followed by dena-
turation at 65°C for 5 min and chilling on ice for 5 min. The 
annealed samples were then incubated with reverse transcrip-
tase and 2 mM dNTPs (Fermentas, Waltham, MA, USA) for 1 
h at 42°C. Reverse transcription was terminated by heating for 
10 min at 70°C. For amplification, the cDNA was mixed with 
HiPi PCR Mix (ELPIS) and each of the following primer sets: 
HAS2: Forward: 5’-CAGAATCCAAACAGACAGTTC-3’, Re-
verse: 5’-TAAGGTGTTGTGTGTGACTG-3’; β-actin: Forward: 
5’-GTGGGGCTGCCCCAGGCACCA-3’, Reverse: 5’-CTCCT-
TAAT GTCACGCACGATTTC-3’. The resulting PCR products 
were visualized by electrophoretic separation on 3% agarose 
gels and staining with RedSafeTM Nucleic Acid Staining So-
lution (ELPIS). Specific primers for β-actin were added as a 
control.

Experimental animals 
Six-week-old female albino hairless mice (SKH-1) were pur-

chased from Orient Bio (Seongnam, Korea). The hairless mice 
were acclimated for 1 week before starting the experiments 
and then divided into 6 groups of 10 mice each. The feed-
ing environment was maintained under controlled temperature 
(24 ± 2°C) and humidity (55 ± 10%) and automatic lighting (12 
h light and dark cycle). Feed was provided (Feed Lab Korea, 
Guri, Korea) to the hairless mice. Laboratory animal breeding 
management was based on the “Guide for the Care and Use 
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Fig. 3. Effects of PPE, Gly-Leu, and 
Leu-Gly on the synthesis of HA in 
NHEKs. NHEKs were treated with 
various concentrations of PPE, Gly-
Leu, and Leu-Gly. The cell super-
natant from NHEKs was measured 
using an ELISA kit. Treatment with 
retinoic acid was used as a positive 
control. Values are presented as the 
mean ± SD of three determinations 
(n=3). *p<0.05, **p<0.01 compared 
with control.
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Fig. 4. Effects of PPE, Gly-Leu, 
and Leu-Gly on the mRNA expres-
sion of HAS2 in NHEKs. NHEKs 
were treated with various concen-
trations of PPE, Gly-Leu, and Leu-
Gly. NHEKs were seeded into 6-well 
plates at 3×105 cells/well. After 24 h, 
the cells were washed with DPBS, 
and serum-free media was added. 
After starvation for 24 h, NHEK cells 
were cultured with various concen-
trations of PPE, Gly-Leu, and Leu-
Gly for 24 h. The mRNA expression 
of HAS2 was measured by RT-PCR. 
Values are presented as the mean ± 
SD of three determinations (n=3). 
***p<0.001 compared with control.
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of Laboratory Animals,” and all experiments were approved by 
the Institutional Animal Care and Use Committees of Gyeong-
gi Institute of Science & Technology (Suwon, Korea).

UVB irradiation
The UVB source was six fluorescent lamps (TL 20W/12RS 

SLV, wave length 290 to 390 nm, peak emission 315 nm; 
(Philips, Amsterdam, Netherlands), and the UVB irradiation 
intensity was measured with a UV meter (VARIOCONTROL, 
Waldmann ver.2.03, Villingen-Schwenningen, Germany). The 
mice were exposed to UVB irradiation three times per week. 
The starting dose of UVB irradiation was 75 mJ/cm2 during the 
first week and then increased weekly by 1 minimal erythema 
dose (MED) until reaching 3.3 MED, which was maintained 
until 8 weeks.

Skin hydration and elasticity evaluation
Skin hydration content and elasticity were measured on the 

dorsal skin of the mice using Corneometer (CK Electronics 
GmbH, Cologne, Germany) and Cutometer (CK Electronics). 

Histopathologic analysis
After the end of the experiment, the dorsal skins of all ani-

mals were biopsied and placed in 10% formalin. The dorsal 
skin tissues were stained with haematoxylin and eosin (H&E) 
and Alcian blue. The stained tissues were photographed us-
ing a Nikon ECLIPSE Ti-E inverted fluorescent microscope 
(Nikon, Tokyo, Japan) and analyzed using NIS-Element BR 
3.0 software (Nikon, Tokyo, Japan).

Statistical analysis
All of the data are expressed as mean ± SD. Statistical 

significance was determined by independent t-test. A value of 
p<0.05 (*), p<0.01 (**), or p<0.001(***) was considered statis-
tically significant.

RESULTS

Effects of PPE, Gly-Leu, Leu-Leu, and Leu-Gly on NHEK 
viability 

To determine the cytotoxic effects of PPE, Gly-Leu, Leu-
Leu, and Leu-Gly, we applied these compounds at different 
concentrations to NHEKs. Treatment with PPE, Gly-Leu, Leu-
Leu, and Leu-Gly showed no cytotoxicity at concentrations up 
to 100 μg/ml and 10 μg/ml (Fig. 1).

PPE, Gly-Leu, and Leu-Gly increased the expression of 
TGase 1 in NHEKs

To identify the effects of PPE, Gly-Leu, Leu-Leu, and Leu-
Gly on keratinocyte differentiation, we measured TGase 1 
protein expression level in NHEKs treated with PPE, Gly-Leu, 
Leu-Leu, and Leu-Gly. TGase 1 protein level was significantly 
increased with PPE in a dose-dependent manner (Fig. 2A). 
Gly-Leu and Leu-Gly treatment also increased TGase 1 pro-
tein level (Fig. 2B, 2D), but Leu-Leu treatment did not change 
TGase 1 protein level (Fig. 2C). 

 PPE, Gly-Leu, and Leu-Gly increased synthesis of HA and 
HAS2 mRNA levels in NHEKs

To investigate the effects of PPE, Gly-Leu, and Leu-Gly on 
synthesis of HA, HA was measured in NHEKs. Treatment of 
PPE increased HA level in a dose-dependent manner com-
pared to the control (Fig. 3). Treatment with Gly-Leu and 
Leu-Gly also increased HA level at 10 μg/ml concentration. It 
was reported that increased mRNA level of HAS2 induced HA 
production in human keratinocytes (Kim et al., 2004). Since 
treatment with PPE, Gly-Leu, and Leu-Gly increased HA level, 
we examined the HAS2 mRNA expression level in NHEKs. 
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Treatment with PPE, Gly-Leu, and Leu-Gly significantly in-
creased HAS2 mRNA expression level at all tested concentra-
tions compared to the control (Fig. 4). These results suggest 
that treatment with PPE, Gly-Leu, and Leu-Gly increases HA 
synthesis through increased mRNA level of HAS2.

PPE, Gly-Leu, and Leu-Gly inhibited elastase activity in 
NHEKs

To determine the effects of PPE, Gly-Leu, and Leu-Gly on 
elastase activity, we measured elastase activity as described 
in the Methods section. PPE, Gly-Leu, and Leu-Gly treatment 
significantly reduced elastase activity in a dose-dependent 
manner (Fig. 5). 

Oral administration of PPE, Gly-Leu, and Leu-Gly  
increased skin hydration and elasticity in hairless mice

To analyze the effects of PPE, Gly-Leu, and Leu-Gly on 
skin hydration and elasticity in vivo, we orally administered 
PPE, Gly-Leu, and Leu-Gly to UVB-exposed hairless mice 
for 8 weeks. Skin hydration and elasticity were significantly 
increased in the PPE intake group in a dose-dependent man-
ner and also increased in the Gly-Leu and Leu-Gly 10 mg/
kg intake groups compared with UVB-induced group (Fig. 6).

Oral administration of PPE, Gly-Leu, and Leu-Gly increased 
HA level and HAS2 mRNA level in hairless mice skin

Epidermal thickness was increased and HA was decreased 
in UVB-induced hairless mouse skin. Oral supplement with 
PPE, Gly-Leu, and Leu-Gly significantly decreased epidermal 
thickness and increased the level of HA compared to those in 
the UVB-induced group (Fig. 7). We examined HAS2 mRNA 
level in dorsal skin using RT-PCR. HAS2 mRNA level was in-
creased in the PPE intake group in a dose-dependent man-

ner compared to the UVB-induced group. In addition, HAS2 
mRNA level was increased in the Gly-Leu and Leu-Gly 10 mg/
kg intake groups (Fig. 8). 

DISCUSSION

Gly-Leu, Leu-Gly, and Leu-Leu dipeptides were included 
in PPE. When we analyzed PPE, large quantities of Gly-
Leu, Leu-Gly, and Leu-Leu were contained, in amounts of 
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1,200~2,400 mg/kg, 140~600 mg/kg, and 250~450 mg/kg, 
respectively. Glycine has been reported to increase collagen 
synthesis in rats (Chyun and Griminger, 1984). Based on this 
information, we tested whether PPE and glycine-containing 
peptides in PPE were effective for skin moisturization and 
elasticity. 

We showed that treatment with PPE, Gly-Leu, and Leu-Gly 
increased keratinocyte differentiation (Fig. 2). In addition, syn-
thesis of HA was increased by treatment with PPE, Gly-Leu, 
and Leu-Gly (Fig. 3). It was previously reported that synthe-
sis of HA was inhibited by down-regulation of HAS2 expres-
sion (Rock et al., 2011). We found that treatment with PPE, 
Gly-Leu, and Leu-Gly increased HAS2 mRNA expression in 
NHEKs, which resulted in HA synthesis (Fig. 4). We also found 
that PPE, Gly-Leu, and Leu-Gly decreased elastase activity 
(Fig. 5). Therefore, Gly-Leu and Leu-Gly could be functional 
peptides in PPE. Conversely, Leu-Leu showed no activity (Fig. 
2C).

It has been reported that inhibition of HA synthesis de-
creased skin hydration and viscoelasticity by down-regulation 
of HAS2 in hairless mice (Rock et al., 2015). We investigated 
the effects of PPE, Gly-Leu, and Leu-Gly in hairless mice in 
vivo. We found that oral administration of PPE, Gly-Leu, and 
Leu-Gly dipeptides increased skin hydration and elasticity in 
UVB-induced mice (Fig. 6). Oral administration of PPE, Gly-
Leu, and Leu-Gly dipeptides also increased HA synthesis (Fig. 
7) and HAS2 mRNA expression (Fig. 8). 

Gly-Leu and Leu-Gly dipeptides of fermented porcine pla-
centa extract have been reported to have a reducing effect on 
fatigue (Nam et al., 2016). However, no studies have analyzed 
the effects of dipeptides on skin. In this study, we report the ef-
fects of PPE and its major peptides, Gly-Leu and Leu-Gly, on 
skin moisturization and elasticity for the first time.

In summary, oral supplementation with PPE, Gly-Leu, and 
Leu-Gly could protect skin from UV-damage by restoring the 
synthesis of HA and reducing the inhibition of elastase. Also, 
Gly-Leu and Leu-gly peptides were shown to be functional in-
gredients of PPE. Therefore, we suggest that PPE and its ma-
jor peptides, Gly-Leu and Leu-Gly, could be potential candi-
date materials for skin moisturization and elasticity as dietary 
supplements.
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